II B.Tech I Semester(R09) Supplementary Examinations, May 2011

ELECTRONIC DEVICES \& CIRCUITS
(Electronics \& Instrumentation Engineering, Electronics \& Control Engineering, Electronics \& Communication Engineering, Electronics \& Computer Engineering, Computer Science \& Systems Engineering, Information Technology, Computer Science \& Engineering) Time: 3 hours

Max Marks: 70

Answer any FIVE questions
 All questions carry equal marks
 $\star \star \star \star \star$

1. (a) Discuss PN diode VI characteristics with neat sketch.
(b) Calculate the factor by which the current will increase in a silicon diode operating at a forward voltage of 0.4 Volts, when the temperature is raised from 25 C to 150 C .
2. (a) With circuit and necessary waveforms explain the operation of Bridge Rectifier.
(b) Design a filter for FWR circuit with LC filter to provide an output voltage of 10 Volts with a load current of 200 mA and the ripple is limited to 2%.
3. (a) With neat sketch explain the different current components of transistor.
(b) In an NPN transistor emitter is grounded, base is connected with 4 Volts supply in series with 100 K ohms resistor and collector base is connected with 4 Volts supply in series with 2 K ohms. Assume $\mathrm{V}_{\mathrm{CC}}=12$ Volts, $\mathrm{V}_{\mathrm{BE}}=0.7$ Volts, $\beta=100$. Find I_{B}, I_{C} and I_{E}
4. (a) Explain diode compensation circuit for variations in I_{C} for self bias circuit.
(b) How self bias circuit will eliminate drawbacks in fixed bias circuit.
5. (a) With neat structure explain the principle of operation of depletion MOSFET.
(b) Explain drain characteristics of JFET.
6. (a) Derive an expression for voltage gain, Input Impedance and output impedance of CG amplifier at low frequencies.
(b) In an N - channel JFET based voltage divider common drain configuration, determine the value of résistor Rs sQ as to have the operating point as $\operatorname{IDQ}=5 \mathrm{~mA}, \mathrm{VDSQ}=10 \mathrm{~V}$. Given that $\mathrm{VDD}=28 \mathrm{~V}$, R1 1 M ohms, $\mathrm{R} 2=0.5 \mathrm{M}$ ohms, saturation drain current of the FFET is 10 mA and gate source pinch off voltage is ' -5 V '.
7. For the transistor amplifier shown below, Compute $A_{I}=I_{0} / I_{i}, A_{v}, A_{v s}$ and R_{i}. Assume $h_{i e}=$ 1100 ohms, $\mathrm{h}_{\mathrm{fe}}=50, \mathrm{~h}_{\mathrm{re}}=2.5 * 10^{-4} \mathrm{~h}_{\mathrm{oe}}=24 \mathrm{uA} / \mathrm{V}$

8. Discuss the principle of operation of
(a) Varactor Diode
(b) LED
(c) LDR
